Grit Schaarschmidt, Florian Wegner, Sigrid C. Schwarz, Hartmut Schmidt, Johannes Schwarz,
Background: Voltage-gated potassium (Kv) channels are among the earliest ion channels to appear during brain development, suggesting a functional requirement for progenitor cell proliferation and/or differentiation. We tested this hypothesis, using human neural progenitor cells (hNPCs) as a model system.
Methodology/Principal Findings: In proliferating hNPCs a broad spectrum of Kv channel subtypes was identified using quantitative real-time PCR with a predominant expression of the A-type channel Kv4.2. In whole-cell patch-clamp recordings Kv currents were separated into a large transient component characteristic for fast-inactivating A-type potassium channels (IA) and a small, sustained component produced by delayed-rectifying channels (IK). During differentiation the expression of IA as well as A-type channel transcripts dramatically decreased, while IK producing delayed-rectifiers were upregulated. Both Kv currents were differentially inhibited by selective neurotoxins like phrixotoxin-1 and a-dendrotoxin as well as by antagonists like 4-aminopyridine, ammoniumchloride, tetraethylammonium chloride and quinidine. In viability and proliferation assays chronic inhibition of the A-type currents severely disturbed the cell cycle and precluded proper hNPC proliferation, while the blockade of delayed-rectifiers by a-dendrotoxin increased proliferation.
Conclusions/Significance: These findings suggest that A-type potassium currents are essential for proper proliferation of immature multipotent hNPCs.
Xanya Sofra Weiss

No comments:
Post a Comment